

LMC6484 CMOS Quad Rail-to-Rail Input and Output Operational Amplifier

General Description

The LMC6484 provides a common-mode range that extends to both supply rails. This rail-to-rail performance combined with excellent accuracy, due to a high CMRR, makes it unique among rail-to-rail input amplifiers.

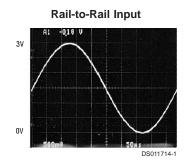
It is ideal for systems, such as data acquisition, that require a large input signal range. The LMC6484 is also an excellent upgrade for circuits using limited common-mode range amplifiers such as the TLC274 and TLC279.

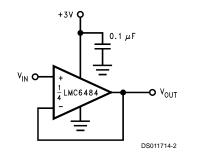
Maximum dynamic signal range is assured in low voltage and single supply systems by the LMC6484's rail-to-rail output swing. The LMC6484's rail-to-rail output swing is guaranteed for loads down to 600Ω .

Guaranteed low voltage characteristics and low power dissipation make the LMC6484 especially well-suited for battery-operated systems.

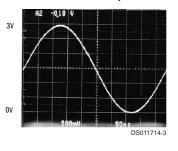
See the LMC6482 data sheet for a Dual CMOS operational amplifier with these same features.

Features


(Typical unless otherwise noted)


- Rail-to-Rail Input Common-Mode Voltage Range (Guaranteed Over Temperature)
- Rail-to-Rail Output Swing (within 20 mV of supply rail, 100 kΩ load)
- Guaranteed 3V, 5V and 15V Performance
- Excellent CMRR and PSRR: 82 dB
- Ultra Low Input Current: 20 fA
- High Voltage Gain (R_L = 500 kΩ): 130 dB
- Specified for 2 kΩ and 600Ω loads

Applications


- Data Acquisition Systems
- Transducer Amplifiers
- Hand-held Analytic Instruments
- Medical Instrumentation
- Active Filter, Peak Detector, Sample and Hold, pH Meter, Current Source
- Improved Replacement for TLC274, TLC279

3V Single Supply Buffer Circuit

Rail-to-Rail Output

© 2000 National Semiconductor Corporation DS011714

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2.0 kV
Differential Input Voltage	±Supply Voltage
Voltage at Input/Output Pin	(V^+) + 0.3V, (V^-) – 0.3V
Supply Voltage (V ⁺ – V ⁻)	16V
Current at Input Pin (Note 12)	±5 mA
Current at Output Pin	
(Notes 3, 8)	±30 mA
Current at Power Supply Pin	40 mA
Lead Temp. (Soldering, 10 sec.)	260°C

Storage Temperature Range-65°C to +150°CJunction Temperature (Note 4)150°C

Operating Ratings (Note 1)

Supply Voltage	$3.0V \leq V^+ \leq 15.5V$
Junction Temperature Range	
LMC6484AM	$-55^{\circ}C \le T_{J} \le +125^{\circ}C$
LMC6484AI, LMC6484I	$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
Thermal Resistance (θ_{JA})	
N Package, 14-Pin Molded DIP	70°C/W
M Package, 14-Pin	
Surface Mount	110°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

				Тур	LMC6484AI	LMC6484I	LMC6484M	
Symbol	Parameter	Condit	ions	(Note 5)	Limit	Limit	Limit	Units
					(Note 6)	(Note 6)	(Note 6)	
Vos	Input Offset Voltage			0.110	0.750	3.0	3.0	mV
					1.35	3.7	3.8	max
TCV _{os}	Input Offset Voltage			1.0				µV/°C
	Average Drift							
I _B	Input Current	(Note 13)		0.02	4.0	4.0	100	pA max
l _{os}	Input Offset Current	(Note 13)		0.01	2.0	2.0	50	pA max
CIN	Common-Mode			3				pF
	Input Capacitance							
R _{IN}	Input Resistance			>10				Tera Ω
CMRR	Common Mode	$0V \le V_{CM} \le 15$.0V,	82	70	65	65	dB
	Rejection Ratio	V ⁺ = 15V			67	62	60	min
		$0V \le V_{CM} \le 5.0$)V	82	70	65	65	
		$V^{+} = 5V$			67	62	60	
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$,	82	70	65	65	dB
	Rejection Ratio	$V^{-} = 0V, V_{O} =$	2.5V		67	62	60	min
-PSRR	Negative Power Supply	$-5V \le V^- \le -18$	5V,	82	70	65	65	dB
	Rejection Ratio	$V^+ = 0V, V_0 =$	–2.5V		67	62	60	min
V _{CM}	Input Common-Mode	V ⁺ = 5V and 1	5V	V ⁻ - 0.3	-0.25	-0.25	-0.25	V
	Voltage Range	For CMRR ≥ 5	0 dB		0	0	0	max
				V ⁺ + 0.3	V ⁺ + 0.25	V ⁺ + 0.25	V ⁺ + 0.25	V
					V*	V+	V+	min
A _V	Large Signal	$R_L = 2k\Omega$	Sourcing	666	140	120	120	V/mV
	Voltage Gain	(Notes 7, 13)			84	72	60	min
			Sinking	75	35	35	35	V/mV
					20	20	18	min
		$R_L = 600\Omega$	Sourcing	300	80	50	50	V/mV
		(Notes 7, 13)			48	30	25	min
			Sinking	35	20	15	15	V/mV
					13	10	8	min

DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

			Тур	LMC6484AI	LMC6484I	LMC6484M	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
				(Note 6)	(Note 6)	(Note 6)	
Vo	Output Swing	V ⁺ = 5V	4.9	4.8	4.8	4.8	V
		$R_L = 2 k\Omega$ to V ⁺ /2		4.7	4.7	4.7	min
			0.1	0.18	0.18	0.18	V
				0.24	0.24	0.24	max
		V ⁺ = 5V	4.7	4.5	4.5	4.5	V
		$R_L = 600\Omega$ to V ⁺ /2		4.24	4.24	4.24	min
			0.3	0.5	0.5	0.5	V
				0.65	0.65	0.65	max
		V ⁺ = 15V	14.7	14.4	14.4	14.4	V
		$R_L = 2 k\Omega$ to V ⁺ /2		14.2	14.2	14.2	min
			0.16	0.32	0.32	0.32	V
				0.45	0.45	0.45	max
		V ⁺ = 15V	14.1	13.4	13.4	13.4	V
		$R_L = 600\Omega$ to V ⁺ /2		13.0	13.0	13.0	min
			0.5	1.0	1.0	1.0	V
				1.3	1.3	1.3	max
I _{sc}	Output Short Circuit	Sourcing, $V_{O} = 0V$	20	16	16	16	mA
	Current			12	12	10	min
	V+ = 5V	Sinking, $V_O = 5V$	15	11	11	11	mA
				9.5	9.5	8.0	min
I _{SC}	Output Short Circuit	Sourcing, $V_{O} = 0V$	30	28	28	28	mA
	Current			22	22	20	min
	V ⁺ = 15V	Sinking, $V_{O} = 12V$	30	30	30	30	mA
		(Note 8)		24	24	22	min
ls	Supply Current	All Four Amplifiers	2.0	2.8	2.8	2.8	mA
		$V^+ = +5V, V_0 = V^+/2$		3.6	3.6	3.8	max
		All Four Amplifiers	2.6	3.0	3.0	3.0	mA
		$V^+ = +15V, V_0 = V^+/2$		3.8	3.8	4.0	max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

			Тур	LMC6484A	LMC6484I	LMC6484M	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
				(Note 6)	(Note 6)	(Note 6)	
SR	Slew Rate	(Note 9)	1.3	1.0	0.9	0.9	V/µs
				0.7	0.63	0.54	min
GBW	Gain-Bandwidth Product	V ⁺ = 15V	1.5				MHz
φ _m	Phase Margin		50				Deg
G _m	Gain Margin		15				dB
	Amp-to-Amp Isolation	(Note 10)	150				dB
e _n	Input-Referred	f = 1 kHz	37				nV/√Hz
	Voltage Noise	$V_{CM} = 1V$					1107 112
i _n	Input-Referred	f = 1 kHz	0.03				pA/√Hz
	Current Noise						µ~/√⊓z

LMC6484

AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1M$. Boldface limits apply at the temperature extremes.

			Тур	LMC6484A	LMC6484I	LMC6484M	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
				(Note 6)	(Note 6)	(Note 6)	
T.H.D.	Total Harmonic Distortion	$f = 1 \text{ kHz}, A_V = -2$	0.01				%
		$R_L = 10 \text{ k}\Omega, V_O = 4.1 \text{ V}_{PP}$					
		$f = 10 \text{ kHz}, A_V = -2$					
		$R_L = 10 \text{ k}\Omega, V_O = 8.5 \text{ V}_{PP}$	0.01				%
		V ⁺ = 10V					

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V⁺ = 3V, V⁻ = 0V, V_{CM} = V_O = V⁺/2 and R_L > 1M

-			Тур	LMC6484AI	LMC6484I	LMC6484M	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
eyniser				(Note 6)	(Note 6)	(Note 6)	0
Vos	Input Offset Voltage		0.9	2.0	3.0	3.0	mV
				2.7	3.7	3.8	max
TCV _{os}	Input Offset Voltage Average Drift		2.0				µV/°C
I _B	Input Bias Current		0.02				pА
I _{os}	Input Offset Current		0.01				pA
CMRR	Common Mode	$0V \le V_{CM} \le 3V$	74	64	60	60	dB
	Rejection Ratio		_				min
PSRR	Power Supply	$3V \le V^+ \le 15V, V^- = 0V$	80	68	60	60	dB
	Rejection Ratio						min
V _{CM}	Input Common-Mode	For CMRR ≥ 50 dB	V ⁻ - 0.25	0	0	0	V
	Voltage Range						max
			V ⁺ + 0.25	V+	V+	V+	V
							min
Vo	Output Swing	$R_L = 2 k\Omega$ to V ⁺ /2	2.8				V
			0.2				V
		$R_L = 600\Omega$ to V ⁺ /2	2.7	2.5	2.5	2.5	V
							min
			0.37	0.6	0.6	0.6	V
							max
I _S	Supply Current	All Four Amplifiers	1.65	2.5	2.5	2.5	mA
				3.0	3.0	3.2	max

AC Electrical Characteristics

Unless otherwise specified, V⁺ = 3V, V⁻ = 0V, V_{CM} = V_O = V⁺/2 and R_L > 1M

			Тур	LMC6484AI	LMC6484I	LMC6484M	
Symbol	Parameter	Conditions	(Note 5)	Limit	Limit	Limit	Units
				(Note 6)	(Note 6)	(Note 6)	
SR	Slew Rate	(Note 11)	0.9				V/µs
GBW	Gain-Bandwidth Product		1.0				MHz
T.H.D.	Total Harmonic Distortion	$f = 10 \text{ kHz}, A_V = -2$	0.01				%
		$R_L = 10 \text{ k}\Omega, V_O = 2 \text{ V}_{PP}$					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics. Note 2: Human body model, 1.5 kΩ in series with 100 pF. All pins rated per method 3015.6 of MIL-STD-883. This is a class 2 device rating.

AC Electrical Characteristics (Continued)

Note 3: Applies to both single supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

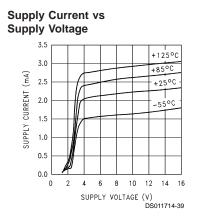
Note 7: V⁺ = 15V, V_{CM} = 7.5V and R_L connected to 7.5V. For Sourcing tests, 7.5V \leq V_O \leq 11.5V. For Sinking tests, 3.5V \leq V_O \leq 7.5V.

Note 8: Do not short circuit output to V^+ , when V^+ is greater than 13V or reliability will be adversely affected.

Note 9: V⁺ = 15V. Connected as Voltage Follower with 10V step input. Number specified is the slower of either the positive or negative slew rates.

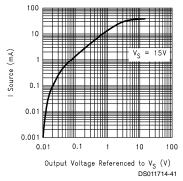
Note 10: Input referred, V⁺ = 15V and R_L = 100 k Ω connected to 7.5V. Each amp excited in turn with 1 kHz to produce V_O = 12 V_{PP}.

Note 11: Connected as Voltage Follower with 2V step input. Number specified is the slower of either the positive or negative slew rates.

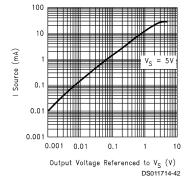

Input Current vs

Note 12: Limiting input pin current is only necessary for input voltages that exceed absolute maximum input voltage ratings.

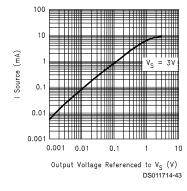
Note 13: Guaranteed limits are dictated by tester limitations and not device performance. Actual performance is reflected in the typical value.

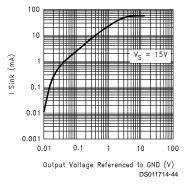

Note 14: For guaranteed Military Temperature Range parameters see RETSMC6484X.

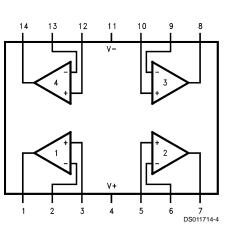
Typical Performance Characteristics $V_{s} = +15V$, Single Supply, $T_{A} = 25^{\circ}C$ unless otherwise specified



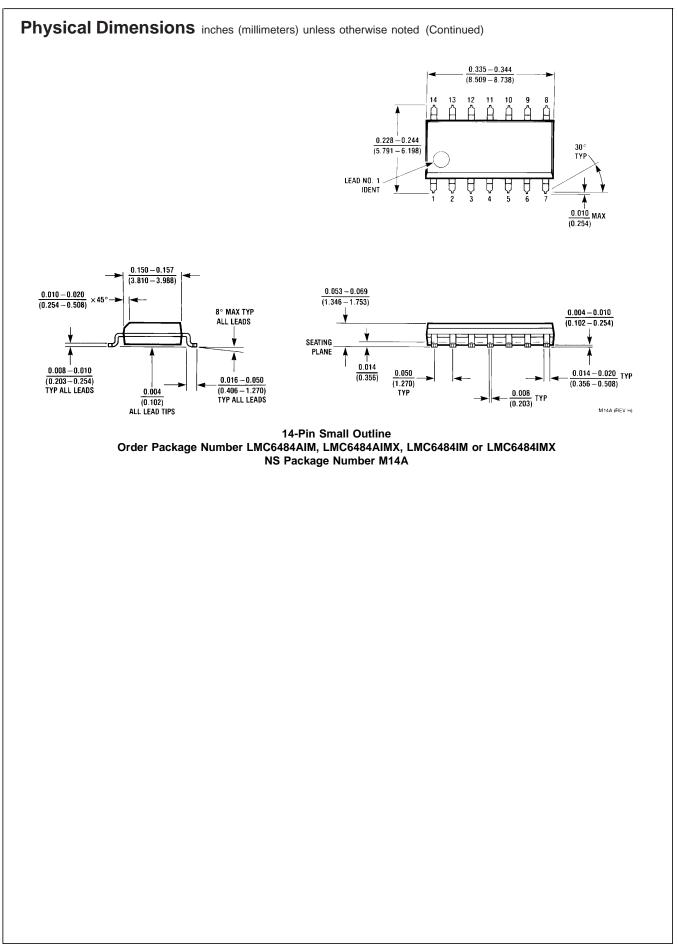
Temperature




Sourcing Current vs Output Voltage


Sourcing Current vs Output Voltage

Sinking Current vs Output Voltage


Connection Diagram



Ordering Information

Package	Temperati	NSC	Transport	
	Military	Industrial	Drawing	Media
	–55°C to +125°C	–40°C to +85°C		
14-pin		LMC6484AIN	N14A	Rail
Molded DIP		LMC6484IN		
14-pin		LMC6484AIM, AIMX	M14A	Rail
Small Outline		LMC6484IM, IMX		Tape and Reel
14-pin Ceramic DIP	LMC6484AMJ/883		J14A	Rail

LMC6484

14-Pin Molded DIP Order Package Number LMC6484AIN, LMC6484IN or LMC6484MN NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.